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THE APPLICATION OF GREEN'!'S THEOREM TO THE SOLUTION
OF BOUNDARY-VALUE PROBLREMS IN LINEARIZED
SUPERSONIC WING THEORY'

By Max. A. Heaslet and Harvaerd Lomax

SUMMARY

Following the Introduction of the linearized partisl differen—
t1al equation for nonsteady three—dimensional compressible flow,
general methods of solution are gilven for the two— and three—
dimensional steady—state and two-dimensional unsteady—state equations.
It is also pointed out that, in the absence of thickness effects,
linear theory yields solutions consistent with the assumptions made
when applied to lifting—surface problems for swept—back plan forms
at sonic speeds. The solutions of the particular equations are
determined in all cases by means of Green's theorem and thus depend
on the use of Green'’s equivalent layer of sources, slinks, and
doublets. TImproper integrals in the supersonic theory are treated
by means of Hedamard®s "finite part" technique.

Four epplicetions of the general solutions are glven: First,
the angle—of-attack load dlstribution for a supersonic, yawed,
triangular plate with subsonic leading edges is determined. Second,
downwash is celculated along the center line In the plane of the
unyawed triangular wing. Third, the growbth of load distribution is
presented for subsonic and supersonic two—dimensionel flat plates
elther starting from rest at a uniform velocity or experiencing an
abrupt angle—of—attack change. The transient effects on lift—curve
glope are then calculated. Finally, the load distribution and 1ift—
curve slope of a specific swept—back lifting surface are determined
at a free—stream Mach numher of one. .

lpregented by Dr. Heaslet at the VII International Congress of
Applied Mechanics, September 1948, London.
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TNTRODUCTION

If the effects of viscoslity are assumed small and shock—free
compressible flow is considered, the velocity field about a two— or
three—dimensional body placed in a uniform free stream 1is irrota—
tional and thus possesses a velocity potential. In the determination
of the pressures exerted on such a body or in the calculation of the
induced velocity components, the theoretical aerodynamicist is
concerned essentially with finding the velocity potential of the flow
field and, thus, must determine the solution of a second—order non—
linear partial differential equation subject to certain boundary
conditions. The known mathematical difficulties that arise in the
treatment of such a problem meke it expedient to resort to simplify—
ing assumptions. In epplied aerodynamics, however, efficiency of
flight at high speeds has focused attention on bodies inducing
relatively small velocities throughout the field of flow and, as a
consequence, the demands of engineering furnish a guide for the
mathematical simplification of the theory. The so—called linearized
theory of compressible flow was developed to solve such problems and,
although considerable work of a more precise nature has been presented
in two dimensions, a large emount of investigetion 1n umnsteady flight
and in three—dimensionsl wing theory remains to be completed within
the framework of the simplifying conditions.

The present paper is restricted to a discussion of wing theoxry
subject to the assumptions of linearized compressible flow. It
therefore employs solutions of Ilaplacets equation and the wave
equation for cases where the boundary conditions are specified in
the plane of the wing. Attention will be directed primarily to the
analysis of steady—state conditions although an equivalence will be
established between the two—dimensional differential equation cdn—
taining the time veriable and the equation applying to three—
dimensional supersonic wing theory. Solutions in all cases will be
obtained through the use of Green's theorem and the resultant concept
of Green'!s equivalent layer of sources, sinks, and doublets. The
correspondence between the theoretical development for subsonic and
supersonic speeds is particularly useful since experience related to
analysis in either flight regime is more readily transferred.

In view of the widespread use of sources, sinks, and doublets
in lowspeed studies and the fact that the earlier applications to
supersonic wing theory by Prandtl (reference 1) and Schlichting
(reference 2) corresponded to the use of Green's equivelent layer,
it is noteble that later emphasis has shifted to other methods of
solution. Sources alone were used by Puckett (reference 3) to create
symmetrical nonlifting wings and were also applied to the study of
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lifting triangular wings with supersonic leading edges, but the use
of source, sink, and doublet sheets has not been as extensive as
might have been expected. This anomaly is even more apparent in view
of the vast mathematical and physical literature centering around

the use of Green's theorem. One possible explanation may stem from
the fact that the interest of the mathematician and physicist in the
wave equetion has aerisen in connection with problems in acoustics,
optics, and vibrating membranes. Such problems introduce boundary
conditions of the Cauchy type, that is, initisl conditions need to

be known both for the unknown function and its rate of change. The
supporting surface for such boundary conditions cuts the character—
istic come of an arbitrary point in a closed curve and has been
called by Hadamaerd (reference 4) a duly inclined surface. In aero—
dynamics the supporting surface is nonduly Inclined and cuts the
characteristic surface or Mach cone along the arc of a hyperbola and,
as a result, the problem is no longer of the Cauchy type and the
anglysis becomes similar to that used in subsonic theory in the solu—
tion of Laplacet!s equation. Prior to the interest of the theoretical
aerodynamicisgt in supersonic wing theory, it appears that little
attention in application was paid to this type of solution.

The material presented here is divided into two main divisions:
Analysis and Applications. In the first part of the Analysis
division, the linearized differential equation for nonsteady com—
pressible flow is given together with the underlying assumptions made.
Specific forms of this equation for two— and three—dimensional steady
states and two—dimensional unsteady states are then considered. It
is pointed out in particular that for swept—back lifting surfaces
linearized theory yields consistent solutions at a free—stream Mach
number of one although the anslysis of arbitrary thickness distribu—
tions is not possible. Following the various equations, Greent's
theorem is applied to find, in terms of the known boundary conditions,
the desired solution by means of source and doublet distributions.

Applications of the general methods are confined to four problems.
As an example of the manner in which angle—of—attack load distributicms
are determined for a lifting flat plate, the case of a yawed triangular
wing with subsonic leading edges is solved. Doublet distributions are
then applied in the second problem to the calculation of downwash
behind the same wing in an unyawed position. Third, the growth of
load distribution with time is derived for a supersonic two—dimensiomal
flat plate either experiencing a sudden sinking motion or starting
from rest at a uniform velocity. Such distributions are of value in
the calculation of indicial 11ft functions and can be used, together
with Dubamel'!s integral, in the study of certain dynamic maneuvers.
The Pinal epplication considers at a Mach number equal to one the case
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of a swept-back lifting surface with tips normal to the free—streeam
direction.

All important symbols are defined in the appendix.

ANALYSIS
The Partial Differential Equations

Basic differential equation.— Consider an aerodynamic body
flying at an arbitrary Mach number M, in air initially at rest.
If a Cartesian coordinate system x, y, z is fixed relative to the
body, the body may then be assumed stationary and situated in a free
stream with the same Mach number. If the free—stream velocity vector
is parallel to and in the directlon of the position x axis and if @
denotes the perturbation velocity potential for isentropic flow, the
linearized partial differential equation for o may be written in
the form

(Moz—l)wxx—q’yy—q’zz+—];'q)tt+%q)xb=o (1)
aq2 a

o}

where ap is the velocity of sound in the free stream and + denotes
time,

The assumptions underlying the derivation of equation (1) have
been stated in numerous places but are not always obviously compatible,

It is assumed here that the ratios %1-, 'Vl’ Vl' are small compared to
o Voo Vo

one, where u, v, w are induced velocity components and Vo 1s the

velocity of the free stream; moreover,

r—1 2u UtV
S M2 (=~ + ——m— )<<l
2 Yo v,

S

and, finally, the velocity gradients at a given point of the flow
field are all of similer magnitude.

Special cases.— The particular forms of equation (1) to be
considered are given in teble I. In the steady—state equations the
original independent variables are retalned; the two—dimensional
unsteady—state equation has, however, new varisbles defined by the
relations
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and consequently the boundary conditions for any particular example
will be subject to the same transformation. In all the equations
the constraints imposed by the linearization permit, for problems in
wing theory, the boundary conditions to be specified in the plane of
the wing. This plane shall arbitrarily be taken to be z=0.

TABLE I.— LINEARTZED PARTTAL, DIFFERENTTAL EQUATIONS OF
COMPRESSIBLE FLOW

Steady State

Two (1Mo3) Px + P2z = 0, Mo<1, (4)
Dimensions [ (Mo2—1l) @xx — Pzz = 0, Mp>1, (B)
(1M2) @y + Py + Pzz = 05 My<1, (c)

Three (MoP=1) Py ~ Py — Py = 0, Mp>1, (D)

Dimensions q)yy +9,, =0 M, = 1, (E)
Unsteady State
Dimg:ions Pttt — Pergt —Pytqt =0 . (F)

The Mach number range for which the equations are valid cannot
be prescribed a priori since induced velocities are functions of wing
geometry and angle of attack. We can say, however, that for certain
configurations at small angles of attack the equations and their
solutions are consistent with the assumptions. In particular, three—
dimensional lifting surfaces with sufficient sweepback yield solutions
of this class at My=l. The differential equation shows that in this
case the boundary conditions need only be specified along strips in
the transverse direction. The surfaces of the Mach cones also are
normal to the free—stream direction so that any disturbance point
mekes itself felt at all points not upstream of it. Since for these
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1ifting surfaces the disturbances do not become excessive at Mp=l,
we have a specific kind of lateral strip theory that yields formal
solutions compatible with the assumptions made.

Boundary Conditions

Steady state.— The boundary conditions are given in the z=0:
plane and in the case of two—dimensional theory the wing is assumed
to extend infinitely, parallel to the y axis. As a convenlence in
notation, two subscripts will be introduced: the first, u, denotes
conditions on the upper surface of the wing, that is, the limit of
the function as 2z approaches zero through positive values; the
second, 1, denotes conditions on the lower surface of the wing, that
is, the limit of the function as 2z approaches zero through nega—
tive values.

Four types of boundary conditions arise in practice:

1. Symmetrical nonlifting wing (boundary—value problem of the
first kind).— The conditions wy = wi = O hold over all
of the xy plane except for the region occupied by the wing.
On the wing, the relations 2wy = — 2w = Awp = £(X,7)
are given, the function £(x,y) being determined by the
geometry of the configuration. Over all of the xy plane,
Aug = uy —uy = 0 applies.

2. Lifting surface with specified loading (boundary value
problem of the first kind).— The condition
Mg =y — ug = 0 holds over the xy plene except for the
region occupied by the wing. On the wing, the relations
Suy = — 2uy = Aup = £(x,y) are given, the function £(x,y)
being determined by the specified loading. Over all of
the xy plane, Awp = O applies.

3. Lifting surface with specified camber and angle of attack
(boundary—value problem of the second kind).— The
condition Aug = O holds over the xy plane except for
the region occupied by the wing. On the wing the
relation w = f(x,y) 1is given, the function £(x,y)
being determined by the given camber, twist, and angle
of incidence. Over all of the xy plsne, Aw, = O applies.

4., Symmetrical wing with specified pressure distribution
(boundary—value problem of the second kind) .~ The
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condition Awg = O holds over all of the xy plane except
for the region occupied by the wing. On the wing the
relation u = f£(x,y) 1is given, the function f(x,y) being
determined by the specified pressure distribution. Over
all of the xy plane, Aup = O applies.

In all cases, induced velocity u is related to pressure coef—
ficient Cp by the relation

2u

Ce =~y

Unsteady state.~ The steady—state bhoundary conditions have been

given in the most general terms possible. The unsteady—state condi—
tions will be limited to a more restricted type of problem, namely,
cases wherein the airfoil is assumed to experience at +=0 either en
abrupt change in angle of attack without pitching or starts to trawvel
at the Instantaneous velocity V,; and angle of attack «. In this .
way the transient variation of load distribution and airfoil charac—
teristics can be calculated for unlt angle—of-attack change. Similar
methods can treat unit rate of pitching, or deflection of aileron, as
well as the effects produced LEADING - EDGE 6—]|
when the airfoil enters a gust TRAGE R
of given structure. The use : ;
of solutions of such problems P N
in connection with operational TRACE OF
methods is well known in applied B N
mathematics. Applications of TRAILING- EDGE ™
these operational methods to
aerodynamics have been given by
R. T. Jones (references 5 and 6)
for incompressible fluid theory
and by Heaslet and Lomax (refer—
ence 7) for supersonic flow.

If the rectangular coor—
dinate system x!,z%,t! assoc—
iated with equation (2) is con—
sidered to be fixed, the airfoil

AN
moves in the negative x! direc— TRAILING-EDGE TRAGE

tion and the free—stream velocity !

is zero. A simple distortion of (p) Subsonic wing.

the time axis is also introduced

to simplify the differential Figure 1l.— Diagram for use in deter-
equation. Figures 1(a) and 1(b) mining boundary conditions in two-—

ald in the visualization of the dimensional unsteady motion.
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problems involved. The alrfoil section is assumed to lie initially

on the x! axis with leading edge at the origin and trailing edge at

the point x? = cp. As time progresses the airfoll sweeps across a !
portion of the x't' plane, the leading edge traversing the line

x? = — Mot? vwhile the trace of the trailing edge is the line
X' = ¢co — Mgt?. The region bounded by these lines and the line
t* = 0 is that swept by the airfoil. The characteristic cones of

the differential equation cut the x't? plane along lines inclined
at+ 45° to either axis. If the airfoil experiences an angle—of—
attack change a without pitching, the "area" swept over by the wing
must yield w = — Vgoau. On the other hand, if the airfoil enters a
gust of constant vertical velocity wo, the region over which the
modification of w is effective is restricted to the region occupied
similtaneously by the airfoil and the gust. If, for example, the
edge of the gust is fixed along the tt axis, this axis will form the
right—-hand boundary of the region over which the change in boundary
conditions occurs. A statement of these boundary conditions may be
put in the following form:

1. Lifting surface undergoing abrupt change or starting from
rest with given velocity.— The condition Augy = 0 holds
over all of the x!t! plane except for the region swept
across by the airfoil. In this latter region, the rela—
tion w = P(x!,t!) is given, the function f£(x!,t!) being '
determined by the modification in airfoil angle of attack, -
pitching velocity, aileron deflection, or by the gust
structure. Over all of the x!t? plane, Awy = O applies.

The expression for pressure coefficient is

Cp = =2 a—<E+\70%q;)

Vo2 \ ot
2 %
VoMo Ot?

Solution of Boundary—Value Problems

General treatment.— The use of Green's theorem in the solution

of second—-order partial differential equations leads one to the con—
sideration of certain particular solutions of the given equatioms. -
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Because of the physical importance as well as the mathematical appli-—
cabllity, attention has been centered on the use of a so—called
fundamental solution or source potential. Thus, in the subsonic
case, the potential at the point x,z of a unit source located at
the point &, { and applicable to equation (A), table I, is the
logarithmic function

@(x,2) = = 1y = o= o V(g 2Hp(eL) (3)

while for equation (C) the potential at x,y,z of the unit source
at &,n,6 1s

= — ‘ (%)

Py T e P ) (D)

Here and elsewhere we have B2 = |1-Mo2| where the bars indicate
that ebsolute values are to be taken. :

The application of these potential functions to the solution of
boundary—value problems in subsonic linearized flow is well known.
Supersonic theory, however, introduces added complications when
the fundamental solutions are considered and, although methods have
been established, the mathematical techniques are of comparatively
recent origin. The principal difficulty lies in the integration of
higher—ordered singularities that appear in the three—dimensional
anslysis. Hadamard (reference 4) resolved these difficulties and
thus avoided the more specialized approach of Volterra (reference 8).
It would appear, however, that a more direct method of derivation
stems from Mercel Riesz!s use of fractional integration. (See, in
this comnection, references 9 and 10.) The oddness or evenness of
the number of dimensions still involves considerable differences
but the final solutions are easily applied.

In two—dimensional supersonic flow, the potential at the polnt
x,z of a unit source located at the point ¢, { is defined as
follows: .

o(x,2) = 0 for (x-£)=< pZ(z~L)?

ox,2) = - 515 for (x-£)22 p3(z—-t)> (5)
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In three dimensions, the source potential is

2ry 2o (28)2—p2 [ (7-1)2+(2-0)2 ]

?(x,y,2z) =

at all points for which the radical is real and is zero elsewhere.

These functions are directly applicable to equations (B) and (D)
of table I. Equations (E) and (F) are, of course, special mathe—
matical cases of equations (A) and (D) for which My is O anda/3,

respectively.

By means of the various source potentials, it 1s now possible
to present solutions of the differential equations in terms of the
prescribed boundary conditions. These conditions are assumed to be
given in the 2z=0 plane and subscripts u and 1 shall again
denote conditions at z=0+ and 2z=0—, respectively. The general
solutions appear as follows:

Equation (4), My,<1,

o(x,2z) = TFB ) [Zn(rA)§=0 %—%) — (pu—91) <%Zn rA>§=O ] de

(7)
Equation (B), Mo>1
x—Pz .
o(x,z) = —%f %&:- d for z>0
+BZ
=_%ﬁ %-(plag for 7<0 (8)

Equation (C), Mo<1l

?x7,7) = () ( )—( 1) ﬁoZﬂJdm

(9)
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Equation (D), Mp>1

ﬂ[(’%)@(%%‘%% - owa) %%H}d&dn

(10)

1
o(x,7,2) = — o

In the last equation, the range of integration is confined to that
portion of the 2z=0 plane that lies within the Mach forecone of the
point x,y,z, that is, within the half—portion of the right circular
cone

(%)% (3=1)2+(2=t)%] = 0

lying upstream of the point x,y,z. The semivertex angle p of this
cone 1s the Mach angle and is given by the relation

p = arc sin-jl = arc cot B

T

The symbol ! was introduced by Hadamard and denotes the
"finite part" of the integral. As in the case of Cauchy®s principal
value, an improper integral is reduced by a prescribed technique to
a finite and unique value. By definition (see also reference 11),

[ %o amax  _ pToamAx) L 2A(x)
LA; (xd_x)S/Z TjC (xo_x)s/Z dx (Xd—&)l/z (11)

In the two—dimensional supersonic case, the solution for the
velocity potential is expressed as the integral of a distribution of
source potentials. In all other cases, both the source potential
and 1ts derlvatlive appear in the integrand, this latter expression
being identified with the doublet potential.

Nonlifting case (symmetrical wing, boundary—value problem of the
firet kind.— Equations (7), (8), (9), and (10) are applicable directly
to the calculation of the potential function corresponding to a
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symmetrical wing. The rg%ation Py = 7 follows from the condition
uy = uz. Moreover, if ng denotes the local slope of the upper

surface of the wing,

and the solutions of the various equations are expressed in terms of
source distributions alone.

For example, equation (10) becomes

.o p i il
?(x,5,2) = T L[f dx A/(x_g)2_32[(y—-n)2+22] (12)

where the finite part sign is dropped since the integral is proper.
This equation was given by Puckett in reference 3.

The pressure coefficient on the surface of the wing is

ot @

) Lifting case (boundary—value problem of the first kind) .— From

the condition wy = w; Wwe have Awy, = O and the integrands in
equations (7), (9), and (10) are expressed solely in terms of
doublet distributions, while equation (8) yilelds the result that
conditions on either side of the wing have no effect on the other
side.

Taking equation (10) as an exemple, the solution under the pre—
scribed conditions is

Hx,¥,2) = — = (9 07) 82z dkdn (13)
21 \jc\/P u {kx—§)2—ﬁ2[(y“ﬂ)2+22]}'3/2
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where x
P17 =f bug(E,m)dt

—00

A more direct evaluation of perturbation velocity u can be obtained
from the alternate expression

1 Auo(8,n)p%z de dn (
u=—- = 1h)
o [f {(x—é)z—ﬁzl(y—n)zﬂzl o/

Similar expressions exist for equations (7) and (9).

Lifting case (boundary-value problem of the second kind).— This
type of boundary condition cannot be solved directly by means of the
formules which have been presented but resolves always into the
required solution of an integral equation. In three—dimensional sub—
sonic wing theory, the method of solution depends usually on some
modificetion of Prandtl!s lifting—line theory although, more recently,
lifting—surface theories by Falkner (reference 12) and Cohen (refer—
ence 13) have been applied successfully.

In the case of three—dimensional supersonic-wing theory, sources,
sinks, and doublets have been utilized in two ways in the solution
of lifting-surface problems. The first of these methods was given by
Evvard (references 14 and 15) and is particularly powerful when one of
the leading edges of the wing is of the supersonic type, that is,
when the velocity component of the free stream normal to the edge is
greater than the speed of sound. A second method of solution was
presented in reference 16 for the important case of wings with sub-—
sonic leading edges, provided the flow field about the wing is of the
conical type introduced by Busemann (reference 17). The essential
feature of this method is the use of differential 11fting elements
carrylng a constant load and designed for use in conical flow fields,
The solution consists of determining the distribution of loading
over these elements so that the resultant induced vertical veloclty
at any point on the lifting surface satisfies the local boundary
condition. When approached from this standpoint, the problem again
requires the solution of an Iintegral equation but the equation is of
the form

XX

b
w(x) = f 2(x1)dxy (15)

a
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and is thus well known from low—speed airfoil—section theory.

Inversions of this equation have been provided by Allen (refer—
ence 18) and von Mises and
Friedrichs (reference 19).

Figure 2 shows the
elemental 1ifting surface to be
used. The gldes of the element
extend back from the tip of the
Mach cone, meking angles & and
5+AS with the posltive x axis
or free—stream direction. The
vertical velocity induced at the
point x,y,0 by the element g}—L‘Ll
be a function of B, AS, and e

or, changing the notation, 0, A9,

Tgure 2.— Lifting surface element
carrying constant load.

and o where

6 =B tan ©
6+A\0 = B tan (B + AD)
03=B-z-

Denotaiilrg the gradient of this vertical velocity with respect to 6 !
by —22 it follows that |
bT:] i
Wz=0 _ 14y W(6+A9,m)—w(6,w)
06 AG>0 i)

where w(6,m) and w(6+A6,w) are the velocities induced by right—
triangular 1lifting surfaces with constant loading and with vertex
angles equal to B and b&+AB, respectively. The velocities
induced by the constantly loaded surface are determined directly
from equation (13). The results of these calculations yleld the
following expressions:

For o<« @
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dw m
z=0 - _ CB f VI gy (168)
J6 2nVo J _; w1(@1-0)3 —
and for o> 06
- @ 2
aW‘z— = — CB f 1-(1)1 da)l (l6b)
6 QIIVO 1 (D]_((Dl—e)z
where
2
Cc = Vo? ap
2 gq

The term Aq—P is the load coefficlent and is equal to the difference
between pressure coefficients on the lower and upper surface of the

wing,

Nonlifting case (boundary—value problem of the second kind).— In
the previously discussed 1lifting case, the induced vertical—velocity
field of a constantly loaded element was calculated. An analogous
type of element can also be developed for use in the determinstion of
nonlifting wings with prescribed pressure distributlons., It is
apparent that differemntial expressions similar to equations (16a) and
(16b) must be derived which establish the induced field of the
x component of perturbation veloclty for a conical~flow element with
constant vertical velocity. From equation (12), the Pollowing
expressions result:

For o <6

®
Lp _2r odmy (17a)
d6  prnd_y (0—0)2W1-;2
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and for > 9

w;-0)2 41—y ®

Xp _2n /D @10y (17p)
06 B Jy (

where pressure coefficient Cp and surface slope A are

C =—é’ X:-TLO-
Vo Vo

The application of equations (17a) and (17b) to the determination
of a thickness distribution supporting a given pressure distribution
consists of determining A as a function of 6 such that the desired
pressure results. The essential simplification of the method is brought
about by the use of elements which lead to single integral equations of
standard form,

APPLICATTORS
Yawed Triangular Lifting Surface

Consider a yawed, triangular flat plate with subsonic leading
edges such as 1is Indicated in figure 3. Relative to the x axis or

free—stream direction, the sides of the triangle make the angles
5o &and ©; so0 that the total

vertex angle is Bg+d1=2A.
The quantities 6¢p, 61, and w
are also introduced where

6, = B tan B,

61 = B tan 83

Kl

Figure 3.— Yawed triangular flat—
plate 1ifting surface with sub—
sonic leading edges.
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The vertical induced velocity at any point on the wing can be
found from equations (16a) snd (16b), provided the distribution of

the loading factor C is known. Setting C=C(8), the downwash is
glven by the expression:

(4)] w -
Vim0 = = e [f C(e)def VAT

wy (0y~0)2

+j;91 C(G)wﬁEMlJ (18)

wy (w1 —B)=

Since the lifting surface is flat, the function C(6) must be found
such that wgz=0p 1is independent of w Ffor —H;<w<By. The integral
equation can be greatly simplified by integrating the w; variation
by parts and then taking the partial derivative of both sides of the
equation with respect to . In this manner, equation (18) reduces
to . ,

o—i@feo c(e)as , 1 fe°cede 1
= 9)
which becomes
> o '
oo -9
—0; .

The solution of equation (20) can be written

n
By
A+ z (6+01)
im
=c(8) = , -8, <A, <6, (21)
0 ¥ (6+61)(6-00) '

and, 1f the integrated loadlng of the wing is finite

AB+B (22)

N RGN

e s e im e me e o et T e e o " ———
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Substitution of equation (22) into equation (18) yields the two
relations

Wi=0 =z [AH:(80,01) + BHa(00,61) ] (23)
and
W0 = g [<AH1(01,6,) + BH2(61,00)] (24)
where 6
1
dws
H;(81,00) = 2
+{62,60) L[ @y, o/ (1-027) (02~62) (@2+60) (22)
and
61

dmg
1) = 6
He(6e,0) “[ @32 & (1-012) (03701 ) (@1+60) (26)

Equations (25) and (26) may be integrated by the standerd methods
for elliptic integrals and, after substituting into equations (23)
and (24) and solving for A and B, we have

Vovz=0 2G
A=-— 60—0
aE (60—01) ot0y (e7)
and
B = — Yowz=0 26001 2G (28)
BE? 8o1+61
where
z 2
G = 16061 — ¥ (1-662) (1-6:°) (29)

60+91

and E! is the complete elliptic integral of the second kind with
modulus ~1-G=.

The load distribution over the wing can now be calculated from
equations (22), (27), and (28). It follows that




NACA TN No. 1767 19

Ap _2¢(8) _ 2 /3G [ (ecd-el)e+2eoel]
q Vo2 BE's 60+01 L & (6,+6)(60)

Typical load distributions over a yawed wing are shown in figure 4 for
B tan B; = 0.6 and for B tan 8y equal to 0, 0.3, 0.6, and 0.9.

(30)

B TAN 80—

-i0 -8 -6 -4 -2 0 2 4 6 .8

Figure 4.~ Angle-of—attack load distribution over yawed triangular
plen form, P tan B, = 0.6.

1.0
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Integration of equation (30) over the surface of the triangular
wing determines for 1ift coefficient the expression

CL:.--g:E%cosA /G—tgl;é (3]_)

where A is sldeslip angle and 2A dis the angle between the leading
edges. Equation (31) was derived for wings with subsonic leading
edges and supersonic tralling edge and consequently is valid only for
cases for which

p+ A< 90°
A+ A<y

A~ A>O (32)

Downwash Behind Triangular Wing in Supersonic Flow

The second application will show how doublet distributions may
be employed in the calculation of downwash in the wake of an unyawed
triangular wing with subsonic leading edges. The expresslon for the
velocity potential will be
given in general form, but
in order to avoild detailed
analysis the value of down—
wash is determined only
along the center line in
the plane of the wing.

A plan vlew of the
wing and wake is shown in
figure 5. The load distri—
bution over the wing is
found from equation (30),
after setting 60=01, %o

RE(;‘XION be
e} Ap ko Pax

4 E1op Vor—poy

REGION
B

(33)

Figure 5.— Triané;tﬂ.a.r wing and wake
together with reglons used in cal—
culating downwash.
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where E', has the modulus »1—8o2. Moreover

x
Cp=f u dx

— 00

so that the Jump in potential @u—9; on the surface of the wing is

L[ R e (34)

Efop

and for points in the wake is

20V,
-9 = - N 8" coc—py= (35)

BB

where c¢g 18 the root chord of the wing. Since the wing and its
wake form a discontinulty surface for the perturbation velocity
potential and since for all points on this surface

3%y _ 9%
9z oz

it follows from equation (10) that the velocity potential at an
arbitrary point x,y,z 1s glven by the relation

(P(x:YJZ) =

f (Pr1) <a§ Sho (36)

vhere T i1s that portion of the wing and wake forward of the Mach

Porecone from the point x,y,z and (Pu—91) 1s given by equa—
tlons (34) and (35).

The value of the downwash aft of the wing and along the x axls
will be calculated from equation (36), thus
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W= l:a%‘ @(X:Y}Z)] 2=0
y=0

is to be determined. In carrying out these calculations, it is
necessary to consider two segments of the x axls behind the wing:

Region A extends from the tralling edge to the point where the
trailing Mach cones from the tips of the wing intersect the x axis
and thus includes velues of x satisfying the inequality

co £x< co(1+60)
Region B includes values of x <for which
co(1+60) < x

The final expressions for downwesh in the two regions are
found, after some manipuletion, to be

Y o_ 5 Eo—(1-%k52)K> N E'o—6o .

Region A: —_= ;
Wo 7E? ko Ely
ko
2 K-E
- 0 d& 37)
Elod, k2 (1+60k) (
w _ 2By 2 1 k&
Reglon B: Yo nB!'q nEY ,[k k+00 (
where
. Wo induced vertical velocity on the wing
K complete elliptic integral of the first kind

Ki, Ko complete elliptic integral of the Pirst kind with
moduli k;, ko, respectively

E complete elliptic integral of the second kind
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E;, E complete elliptic integral of the second kind with moduii
ki, ko, respectively

cof
kl ovYo
\ X—Co
k2 X—Co
cofo

Figure 6 shows the variation of -% along the x axis for various
values of the parameter 6,= tan 5;. The asymptotic values at x=w
are also indicated and can be shown to agree with the values of
downwash at infinity for a wing with the same span load distribution
in incompressible flow. The discontinuity in downwash at the trailing

edge is a characteristic property of supersonic—type trailing edges.

1.0

I e
|

o 41— ]

FOR WING SWEPT 45°

4 6 B Mo
2 .2 102
4 4 108

) 6 .6 16
2 8 .8 l.28

— === ASYMPTOTIC VALUES

]

6 1.8 20 2.2 2.4
s DISTANCE IN CHORDS

0

1.0 1.2 L4 L
X
Co

Figure 6.— Variation of downwash on x axis behind a triangular
wing plotted as a function of distance in chord lengths.
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Denoting downwash at this point by wt, Lagerstrom and Graham
(reference 20) have shown that

¥ _ E'ofo Y
.o (39)

A more detailed development of the results shown in Pigure 6 has
been given in reference 21.

Two—Dimensional Unsteady Lift Problems

It has already been pointed out that, in the case of unsteady
motion in a two—dimensional compressible—flow fleld, the linearized °
partial—differential equation for the perturbation velocity potential
can be transformed into the same form that has been considered in
solving steady—state problems in supersonic wing theory. This
Immediately indicates the possibility that for certain types of
boundary—value problems in the unsteady case an analogy can be estab—
lished with three—dimensional lifting—surface problems.

As an example, let us consider an airfoil that has been flylng
at supersonic speed and then experiences at +'=0 an abrupt angle-—
of-attack change without pitching. Since the angle—of—attack change
is assumed to teke place at +'=0, it can be assumed that previous
t0 this time the induced velocities of the wing are zero and only
subsequent perturbations are to be calculated. Throughout the swept
area in the x't! plane (fig. 1) the vertical induced velocity w is
constant and equal to —Voa. Elsevhere in the z?!=0 apla.ne there is

no discontinuity in the value of pressure, that is, 922 is contin-
uous at z?=0. ot!

Suppose now that the area is a wing plan form and that the
free stream is directed along the +!' axis. The characteristic
cones of the unsteady problem become the Mach cones of the steady—
state problem, and the Mach number of the free stream is ,f2 since
the characteristic lines in the figure are inclined 45° to the axes.

Moreover, the induced vertical velocity is -a-ai:aa.nd the perturba—
Z
¢

tlon velocity in the free—stream direction is B_'bT A correspond—

ence can thus be established between the unsteady problem and a
three—dimensionsl lifting—surface problem.
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As outlined, the boundary—velue problem is one of the second
kind, that 1s, w 1is specified on the wing and Au=Aw=0. off the
wing. In our particular example, however, the edges of the wing are
of the supersonic type and no interaction exists between the two
surfaces of the lifting plate so that pressures on either side can be

calculated by the methods used for symmetrical nonlifting wings.
Thus, from equation (12), for z?! >0

v, dt?,dxt
ot xt,at) =& [ e —— Y
- V(1611 )2—(xt—x"; ) 22!

and for all =z!?
cp(t’,x’,z') = —m(t')xi)—z')

FAY
The expressions for the indicial load coefficient TP are as
follows:

Region A (between lines x'=t!, t9=0, and x'=coMot?)

o (¥1a)
a M -

Region B (between lines xi=—t', x!=t, and x’_=co—Mot’)

e 2—1
&p __ha [iamcosMox » <£
q Mo2—1 L xT Mt M, 2

X’

+ arc sin —):I (11b)
-b!

Region C (between lines x'=—Mot?! and x!'=—1t?)

op _ _ Mo (¥1c)
q Mo=—1
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The growth of AP ith time , as obtained from equations (41a),

(41b), and (41c), is shown in the portion of figure 7 designed

"supersonic.” At t'=0 the loading jumps to the value = and is

constant along the entire chord. This value persists thro out the
previously denoted Region A and thus, with advancing time, moves
rearward along the chord, leaving the trailing edge at +t' = —C%
Over the forward portion of the chord the familiar Ackeret type of
steady—state loading becomes effective, spreading back from the
leading edge and occupying the entire chord length after t' = Mggl'

c
Previous to %! = H;—?-_l a transition region between the two types of
constant loading exists, and subsequent to this time this transition

region moves aft and leaves the trailing edge at +t* = Hcol'

SUPERSONIC SUBSONIC

Figure T.— Pressure distributions on wing undergoing sudden angle—of—
attack change at +!'=0.

.For purposes of comparison, the growth with time of the angle—of—
attack indicial load coefficient for subsonic flight is also shown in
the part of figure T entitled "subsonic." Since in this case the
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lifting—surfaceé analogue involves subsonic leading and trailing
edges, the analysis requires the solution of a boundary—vaeliue problem
of the second kind. The method of Evvaerd (reference 15) was used to
obtain the results shown. It is to be noted that the expression

&p _ ha
g M
holds at +'=0 for all values of Mach number.

M,

Figure 8.— Indicial lift—curve slope for Mach numbers between
0 and 1.4 shown to time required to travel 12 half—chord lengths.

Figure 8 shows the variation of the indiclal 1ift function
Cr,(t?) defined by the relation

Co

A

Cro(t!) =g [ T &x (k2)
(o]

e e e g A e s — e e ¢ T e ey g
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as a function of Mach number and half-chords s traveled by the
airfoil. The curve at M,=0 was Ffirst studied by Wagner (refer—
guoe 22) and R. T. Jones (reference 6). Since the starting value is

s Crg(t?) must initially be infinite. TImmediately afterward,

however, it assumes the velue =n and then rises to the asymptotic
value 2x. At a Mach mumber of 0.4 the starting velue of Cr.(t?)
is 10 followed by & decrease for the time required to travel approxi—
mately one—half chord length and finally a steady rise takes place

__2% At M,=0.8 the behavior is similar.
1242
The dashed portions of the curves were determined from the kmown
variations of the functions and were not calculated explicitly. The
asymptotic values of (g consistent with the Prandtl-Glauert correoc—

tion become so high, however, with increasing Mach number that the
assumptions of small perturbation theory are undoubtedly invalidated
near Mp=1 for sufficiently lerge values of s. The initial portions
of the subsonic curves shown in the figure are, however, valid results
of the theory. The nature of the indicial 1ift function is somewhat
different at supersonic Mach numbers in that the beginning portions of
the curves are flat. The curves rise afterwards, however, in a finite
time to their steady—state value. From equations (4la), (L41b), and
(4lc) the expressions for CLy(t!) are easily calculated for Mp21
and are as follows:

to the asymptotic wvalue

o t Co
First time interval 0 < t!' < T,

(k3a)

il

&=

Cr (1)

Second time interval —2O <t < S0
] 1+Mo Mo—1

4 M bt 1 J 1M 2
Cro(t?) = ;[M—t<% + arc sin 2O - >+ arc cos 1Moot M,
t Mo2—1 Co

+ Mjc - ot P J (43b)
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Third time interval MZil <t
Crg(t?) = ﬁ (43c)

AN

Some of the ebove results, along with further developments
involving the entrance at supersonic speed of an unrestrained air—
foil into a gust, have been given in reference T.

Swept-Back Wings at Mp=1

We turn now to the special form of the baslc differentlal equa—
tion for the case My=l. As given in table I, equation (E), the
veloclity potential satisfies Laplace!s equation

Pyy +Pgy = O

in two dimensions. The boundary condltions need, therefore, to be
glven along strips normal to the free—stream direction. Equation (T)
expresses the solutlon of the equation in terms of two—dimensional
sources, sinks, and doublets where now

inr, =1In v (71)2+(z-t)2

The proposed problem is the determination of the angle—of—
attack load distribution over a swept~back 1lifting plate, the
leading edges will be assumed straight lines while the trailing edge
will, for the time being, be left arbitrary. The nature of the wing
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is thus indicated somewhat arbitrarily in figure 9(a).

Y
Mo' |
Y
X
(a) Plan form with arbitrary
trailing ed.ge__.
f—a—

(b) Plan Porm satisfying Kutta—Joukowski
condition.

Figure 9.— Swept-back wings for analysis at Mgy=1.

Denoting the semivertex angle by 8o, so that the equations of the
leading edges are

Yy =% x tan 8o = * mx (ltk)

it follows from equation (7) that since
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the veloclty potential is given by the relestion

CP(X:Y;Z) = Qiﬂjmx o X, )2 dn (45)

—nX
where

y
LD (%,Y) =f -AVO(X:"]:O) dn
mx

It is then possible, after integrating equation (45) by parts and
imposing the condition that AQ(x,y) =0 at n =% mx, to calcu—
late the derivative of @ with respect to¢ =z and thus obtain for
Wo, 1induced vertical velocity on the wing, the expression

Wo = on B (46)

(12,4

L(y .4 -
—_ AN
1 vo(l:'f]) an

This integral equation is to be solved for Av,, the velocity w,
being assumed constant on the wing and equal to —Vpoa vhere o is

angle of attack. The load distribution can then be calculated from
this solution by means of the relation

ap 2 %%, 23
P fy A¥o(xn) an )

mx

The remainder of the analysis can best be divided into two parts:
The first case treating values of x between 0 and cg, the second
dealing with the remaining values of x on the wing.

Case It 0 £ x £ co.— BSince the leading edges of the wing are

_of subsonic type, singularities in pressure occur at these edges so
that the required solution of equation (46) is of the form

A+By

AVo(x,Y) = m

(48)
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Substitution into equation (46) and use of the fact that AQ(x,y) is
an even function of ¥y 1leads to the result A=0, B=—2wy. Hence

DPo(%,5) = — 2w, MIEX—y2 (49)
and
Ap womPx  _ _ honPx (50)

Case II: co £ x.—~ Let the equation of the trailing edge be

y = a(x) or x = a¥(y) (51)

Using in equation (46) the fact that

Avo(x,y) = — Avo(x,—Y)

the expression for wq becomes

a2 opavan 1 onAv,an
Vo = 5= —_ _ = —o_ (52)
2r ° yE_nZ 228 a(x) yE_n2

If, on the surface of the wing, AQ,(x,n) 1is kmown, then, in
the wake, the discontinuity in the velocity potential is A®,[a*(q),n)]

. since no contribution to the jump in potential is made past the
tralling edge. It follows that if on the wing

Avg(x,m) = £(x,17) (53).

then, in the wake
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_ 9o(x,1) da* 3Po(x,1)
Avo(x,m) [A ) Lot Smol ]m*(n) (53)

Vo &pla*(n),q] da*
2 q oy

+ £ [a*(n),n?] (54)

Substituting equations (53) and (54) into equation (52) and intro—
ducing the Kutta condition that loading at the trailing edge is 2ero,
we get the modified integral equation

a2 mex2
_ 1 fla*( \/67),01] 1 £(x,01)
Wo = — A= f Y20 4 /;2 —-dm (55)

X 2 0-03

where the variables o, o1 now replace 32, 12, respectively.
The function )

> .
2(x0) = 20 f22 () (56)

satisfies egquation (55) and it remains mow to determine a(x) so
that pressure is zero at the trailing edge. But from equation (53)

2_g2
9(x,7) = 2, ﬁ /Ly__ &) o,
—J1

and thus
Ap(x,y) da ¥ k2P x ]
PR - ua[ & ) +mme) + T S E o)

where k! = % and E(k,y),F(k,¥) are incomplete eJZI:li tic i?ge als
with modulus k = 41%'2 and argument V=arc sin e/
At the trailing edge y=a(x) and

Ap _ _ e G2
T—ll-a. < k axK+mE>
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where the elliptic integrals are now complete. If load coefficient
is set equal to zero, the differential equation

a

(58)

15
b |

follows.

where k = 1 —

The integration of equation (58) leads to the shape of the
trailing edge for which the Kutta condition is satisfied. Figure 9(b)
shows the plan form of the wing. It can be shown that the slope of
the extended trailing edge approaches the slope of the leading edge.

Figure 10.— Load distribution over swept—back plan form at Mo=1.

In figure 10 the load distribution is shown at three spanwise
stations for the case when the wing is cut off along a line normal
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to the free—stream direction. Over the center section of the wing
the Ackeret type of distribution exists. The remeining sections have
discontinuities in slope of the loading at the point where the chord
line is cut by the Mach cone arising at the trailing edge of the rooct
chord. This behavior of the loading has been noted elsewhere for
swept—back wings at higher Mach numbers. (See, e.g., reference 23.)

Lift coefficient Cy, of the wing is given by the expression

b T.E.
oL = %f dyf L ax
- L.E.

vhere S and b are, respectively, area and semispan of the wing and
the first integral extends from the leading edge to the traliling edge.
This equation may be rewritten as

b
oL, = g%o-f MP(T.E.,y) dy (59)

o

~

vhere AQ(T.E.,y) 1s the jump in potential at the trailing edge and
thus equal to the circulation function I'(y). The following results
are obtalned:

I'(y) = 2mVocom, 0K YSA

L(y) = 2Voab [E(k,\y);(l-kzmw,w)] , ASYSD (60)

2 A
where k= /1 — 2 and A 1s the lateral distance to the imboard

e e e e e T = 8 2 AT A it S A S g o g A A = T < i
e e o o e e g Ty A > o
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tip of the wing. (See fig. 9(b).) In figru;c'e 11 the value of

~

\

L ]
Votox TAND,

Figure 11.—

i

% = 4 3 ) X T4

y/coTANBa

Spanwise distribution
of circulation for swept—back
wing at Mo=1, b=1.325 c, tan 5,
and AR=Ui.57 tan 3,.

~
Tans,
34,0 44 48 52 56 6.0 64 68
AR/TAN 3,
Figure 12.,— Lift-curve slope as &

function of aspect ratio for
swept—back wing at My=1.

Ames Aeronasutical Laboratory,
National Advisory Committee for Aeronautics,

Moffett Field, Calif.

is plotted as

Vocoa tan 5o
v
a function of —————
co tan Bp

for a wing with semispan
b=1.325 ¢co tan &y and aspect
ratio AR=4.5T7 tan 8o. Results
of the integration of equation
(59) are shown in figure 12

Where x is plotted as a
tan &g
function of AR .
tan B,

The methods presented here
can be gpplied to the case of
the swept~back wing with tips
cut off parallel to the free
stream. In this case & Mach
cone originates not only at the
trailing edge of the root chord
but also at the intersection of
the leading and the lateral
edges. On the portion of the
wing downstream of this Mach
cone, the load distribution is
modified so that an abrupt dis—
continuity exists at the Mach
cone and negative loading is
effective over this part of
the wing. A similar effect on
this type of swept—~back wing has
also been noted at higher Mach
numbers in reference 23.
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APPENDIX
'List of Important Symbols
speed-of sound in free stream
lateral distance to imboard tip of swept wing (See fig. 9)
aspect ratio
semispan

’

chord length (two dimensions)
root chord (three dimensions)

load distribution factor introduced in equation (16)
1ift coefficient
lift—curve slope

indicial 1ift function

S )
pressure coefficient 3 )

complete elliptic integral of the second kind with modulus k

complete elliptic integrals of the second kind with moduli
N1-G®, J1-602, respectively

complete elliptic infegrals of the second kind with moduli
ky, ko, respectively

14
J[‘ V1xPsin?e dg
o

e
o A1-X2sinQ

parameter defined in equation (29)

cobo
X—Co

X<Co
oo
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X1, Ko

u,v,w

Dug, Awo

XY,z

xt,z?,tt

Ap

NACA TN No. 1767
complete elliptic integral of the first kind with modulus k

complete elliptic integrals of the first kind with moduli
k;, ko, respectively

tan B¢

free—stream Mach number

local static pressure

free—stream static pressure
free—stream dynamic pressure Goj'povoz)
W (-€)2+p2(2)2

o (£ )2+p2 [ (3—n)2+(z-t)2]

N (x4 )2—82[ () 2+(2-£)2] ;
distance traveled in half—chords
area of wing

time

rerturbation velocity components parallel to x,y,z axes,
respectively

Jump in value of u, w at the z=0 plane
velocity of free stream

Cartesian coordinstes

coordinates introduced in equation (2)
angle of attack in radians
M=)

load coefficient <OPZ—CPu>
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A

s}

semivertex angle of yawed triangular wing

angle between 1lifting element and x axis

50, 81  angles between leading edges of yawed triangle and x axis

gideslip angle of yawed triangle

Mach angle <%rc sﬁni%i>

£,n,¢ Cartesian coordinates

Po

free—stream density
reglon of integration in equation (10)

perturbation velocity potential

Bl

X

] sign denoting "finite part" of integral

Subscripts

subscript denoting value of variable on upper surface
of wing

subscript denoting value of variable on lower surface
of wing
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